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We present a modification of the Kolmogorov-Johnson-Mehl-Avrami crystallization model to the case of a
finite size crystal facet growing layer by layer. A general expression for the facet growth rate is derived that
provides an asymptotic matching to the known limit cases of very small and very large facets. The derived
expression is applied to the study of the growth kinetics of vertical nanowires in the “vapor-liquid-solid”
growth mechanism. The presented model generalizes the Givargizov-Chernov theory of whisker growth, shows
why the whiskers grow much faster than the nonactivated surface, and gives the dependence of the growth rate
of nanowires on the diameter of drop of liquid alloy and the growth conditions.
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I. INTRODUCTION

Crystal growth from vapors and liquid alloys has been
studied extensively because of a key role of composite struc-
tures in modern microelectronics and optoelectronics. The
growth process consists of many stages, including the nucle-
ation of islands, their independent growth, coalescence, for-
mation of a continuous film surface, and its further time evo-
lution [1]. In many technologically important cases crystals
grow layer by layer so that the islands are formed two di-
mensionally and the lateral growth of each layer starts only
when the formation of a previous layer is fully completed
[2]. The driving force for the growth process is the metasta-
bility of a condensing phase: the supersaturation of a two-
dimensional “vapor” of adatoms or a liquid alloy. Applying
classical nucleation theory to the description of two-
dimensional island formation, one can find expressions for
the island nucleation rateI and lateral growth rate of islands
v as the functions of the supersaturation, the energetics of a
particular deposit-substrate system and the kinetic param-
eters of elementary processes on the surface[1]. One of the
most important characteristics of the growth process is the
normal growth ratedH/dt, whereH is the height of crystal.
In layer-by-layer growth,dH/dt is a certain function ofI , v,
and facet linear sizeR [3]. WhenR is very large, the normal
growth rate isR independent. In this casedH/dt= fsI ,vd can
be found from the well known model proposed by Kolmog-
orov [4], Johnson and Mehl[5], and Avrami [6] (KJMA
model), which has been used extensively in the theory of
crystal growth[3,7–9], alloy solidification [10], monolayer
film formation [11], and many other growth processes.

Recently, however, there has been an increasing interest
towards the growth of crystals of nanometer lateral sizes, in
particular vertical nanowires(VNW’s) (or nanowhiskers)
[12–14]. VNW’s are grown by the “vapor-liquid-solid”
(VLS) mechanism first described by Wagner and Ellis[15].
The lateral size of the whisker is usually determined by the
diameter of a droplet of a liquid catalyst. Since typical lateral

size of a growing facet is only several tens of nanometers,
the size dependent effects come into play and theR behavior
of the vertical growth rate should be carefully investigated. It
should be noted here that in the case of a very small facet the
growth rate is also easily determined[3]. The purpose of this
paper is to present a generalized expression fordH/dt
= fsI ,v ,Rd that is valid for arbitrary values ofI , v, andR and
provides an asymptotic matching to the known results in the
limit cases of very small and very large facet. The obtained
results will be applied to studying the growth kinetics of
VNW’s. The presented kinetic model considerably general-
izes the known Givargizov-Chernov(GC) theory [16] and
answers a number of important questions concerning the
mechanisms of whisker formation by the VLS mechanism.

II. GENERALIZED KJMA MODEL AND THE GROWTH
RATE OF CRYSTAL FACET

Consider a crystal facet of radiusR, growing due to the
nucleation of two-dimensional disc-shaped islands of mono-
layer (ML ) height and of radiusr. If the consumption of
atoms of a condensing phase goes through the island bound-
ary [1,3,11,17], the lateral growth rate of overcritical islands
v=dr /dt does not depend onr. The nucleation theory shows
that normally the critical size of islands is much smaller than
the technologically interesting range[1,3,7–11,17]. There-
fore the islands can be assumed to arise with zero size. IfI
andv are time independent, the characteristic time between
two consecutive birth processes on the facet surface is given
by tb=1/pR2I, and the time required for a nuclei to cover the
facet area is given bytg=R/v. The ratio of these two char-
acteristic times gives the nondimensional control parameter

a ;
pIR3

v
. s1d

At a!1 stg! tbd a single nuclei covers the whole facet be-
fore the next nuclei is formed. This condition relates to the
so-called monocenter regime of nucleation[3]. The normal
growth rate(measured in the number of ML per unit time)
dH/dt=pR2I is v independent. In the opposite case ofa*Email address: v_dubr@mail.ru
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@1 stg@ tbd many islands arise in one layer and then grow
and coalesce to form a continuous ML. The normal growth
rate in this case is found from the KJMA formula for the
crystallized fraction of facet[3,7–11]

gstd = 1 − expF− pE
0

t

d tIstdr 2st,tdG, rst,td =E
t

t

dt8vst8d,

s2d

where rst ,td is the current radius of nuclei born at timet.
The KJMA formula is valid under the following assumptions
[4]: (a) Poissonian nucleation process,(b) nucleus growing
with fixed geometrical shape and orientation,(c) nuclei
growth ratevstd depending only ont, (d) solidlike coales-
cence,(e) space homogeneity of the system, and(f) the ab-
sence of boundaries. Since Eq.(2) applies to the case of an
infinitely large facet, the resulting growth rate isR indepen-
dent. At I =const,v=const the coverage gstd=1
−exps−p v2I t3/3d and thereforedH/dt=sp v2I /3d1/3. Sum-
marizing, the expressions fordH/dt in the two known cases
of monocenter and polycenter nucleation are given by[3]

dH/dt = HpR2I, a ! 1,

sp v2I/3d1/3, a @ 1.
J s3d

The simplest way to introduce the boundary effect into the
KJMA scheme is to write Eq.(2) in the form

gstd = 1 − expF−E
0

t

dtIstdSst,t,RdG s4d

with the effective crystallized area of facetSst ,t ,Rd defined
as

Sst,t,Rd =
1

pR22pE
0

R

drrSst,t,r,Rd. s5d

HereSst ,t ,r ,Rd is the area of the facet covered by the time
t by the nuclei formed at timet at distancer from the facet

center(the transformed area) [4]. The integration in Eq.(5) is
taken over the whole facet area. Equations(4) and (5) are
certainly approximate, because we use the averaged value of
Sst ,t ,r ,Rd instead of the direct introduction of the boundary
effect into Eq.(4) [18]. The functionSst ,t ,r ,Rd depends on
t and t via the radius of nucleir st ,td which remains the
same as defined in Eq.(2). Three possible geometrical situ-
ations for findingSsr ,r ,Rd at different values ofr ,r, andR
are illustrated by Fig. 1. The formulas forSsr ,r ,Rd in these
three cases are given by

Ssr,r,Rd = 5pr 2, r ø R− r,

R2su/2 − sinu/2d + r 2sw/2 − sinw/2d, R− r , r , R+ r,

pR2, r ù R+ r,
6 s6d

where u=2 arccosfsR2+r2−r 2d /2Rrg and w=2 arccosfsr 2

+r2−R2d /2rrg. Obviously, case I in Fig. 1 corresponds to
polycenter and case III to monocenter nucleation while case
II describes the transition between the two limit regimes.

In principle, the substitution of Eq.(6) into Eq. (5), fur-
ther integration of Eq.(5), and using the result in Eq.(4)
allows us to find the characteristic time of ML formation and
therefore the normal growth rate of the facet. However, the
presented expressions are not of friendly form due to the
presence of reverse trigonometric functions. A detailed
analysis of Eqs.(5) and (6) shows that the numerical result

for Sst ,t ,Rd=Sfr st ,td ,Rg can be approximated with high
accuracy by the power function of the form

Ssy,Rd

= HpR2 fy2 − s3/8dy3 − s1/16dy4 + s1/32dy5g, y ø 2,

pR2, y . 2,
J
s7d

where yst ,td=rst ,td /R. The comparison between the nu-
merical result forSsy,Rd obtained from Eqs.(5) and(6) and

FIG. 1. Three possible geometrical situations for finding the
transformed areaSsr ,r ,Rd (shown dark). In case I the facet is con-
siderably larger than the nuclei and the transformed area equals the
nuclei areapr2 irrespective of facet radiusR and positionr. In case
III the facet area is small and the transformed area equals the total
facet areapR2 irrespective of nuclei radiusr and positionr. In case
II the facet and island sizes are comparable to each other and the
transformed area depends onr ,r, andR.
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the approximation given by Eq.(7) is shown in Fig. 2.
At constantI andv the use of Eq.(7) in Eq. (4) gives the

generalized KJMA exponent

gstd = gsyd = 1 − expf− afsydg. s8d

Here ystd=rs0,td /R=vt /R, a=const is defined in Eq.(1)
and

fsyd = Hs1/3dy3 − s3/32dy4 − s1/80dy5 + s1/192dy6, y ø 2,

y − 0.9, y . 2.
J

s9d

The time dependencies of coverageg obtained from Eqs.(8)
and(9) at fixedI andv and different values of facet radiusR
are presented in Fig. 3. The curve ata=105 presents the
usual Kolmogorov exponent in the polycenter mode, the
curve ata=1 corresponds to an intermediate mode, and the
curve ata=0.125 presents the situation when the size asso-
ciated effects become dominating. Figure 3 demonstrates that
at the same growth conditions(I andv) smaller facets grow
considerably slower than the larger ones.

The normal growth rate of facet is given by

dH/dt =
v

Rypsad
. s10d

Quantityyp sad is the solution to the transcendent equation

afsyd = 1 s11d

that determines the characteristic time of ML formation.
The asymptotic matching of the obtained results to the

known limit regimes[3] is obvious. At smalla fsyd<y@1
and thereforeyp <1/a, while at largea fsyd<y3/3!1 and
yp <s3/ad1/3. From here Eq.(10) is immediately reduced to
Eqs. (3) in both limit cases. It can be shown that Eqs.
(7)–(11) remain valid for an arbitrary convex geometry of
islands if we replacepR2 to cR2, whereR is a certain linear
size of island andc the shape constant such that the island
areaS=cR2.

III. KINETIC MODEL OF VNW GROWTH

The typical procedure of the VLS growth[12–16] of
whiskers is shown schematically in Fig. 4. First, the catalyst
B (e.g., Au) is deposited onto a crystal substrate of materialA
(e.g., Si, GaAs), then the substrate is transferred to a growth
chamber and annealed before the whiskers are grown. An-
nealing leads to the formation of drops of eutectic liquid
alloy B+A (e.g., Au+Si or Au+GaAs) on the substrate. The
deposition of materialA from the vapor phase or molecular
beam makes the alloy supersaturated. The whisker grows due
to the crystallization of supersaturated alloy on the crystal
surface under the drop.

Experiments[3,12–16] show that Si, GaAs, and InP whis-
kers at typical growth temperatures grow layer by layer.
Since the initial eutectic drops usually have a broad size
distribution and the whisker lateral size is usually of the or-
der of the size of drop, the size dependence of whisker
growth rate has been studied experimentally in many sys-
tems[3,12,16]. The known GC model provides the following
expression for the whisker growth rate[16]:

FIG. 2. Comparison between the numerical solution for the
transformed area obtained from Eqs.(5) and(6) (black squares) and
the power function defined by Eq.(7) (solid line).

FIG. 3. Dependencies of coverageg on the relative time
vt /R0,R0=sv /pId1/3 at three different facet radiiR relating to dif-
ferent values of parametera.

FIG. 4. Cylindrical whisker of materialA of radiusR and height
H grown on the crystal surface of materialA activated by the drops
of liquid alloy B+A.
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dH/dt = KFDmv
0 −

2Vsgsv

kBTR
G2

; KDmv
2. s12d

HereDmv
0 is the difference of chemical potentials of atomsA

in the vapor and solid phases(in kBT units,T is the substrate
temperature during the whisker growth andkB the Boltzmann
constant) for the planar interfacial boundary,gsv is the sur-
face energy of the solid - vapor boundary(per unit area), Vs
is the volume per atom in the crystal, andK is an unknown
coefficient of crystallization from the liquid alloy. The sec-
ond term in the square brackets on the right-hand side of Eq.
(12) arises due to the curvature of the whisker surface. Equa-
tion (12) qualitatively explains the experimentally observed
increase in the whisker growth rate with an increase of the
size of the droplet and the existence of a certain minimum
size of dropletRmin below which the whiskers cannot grow
[3,12–14,16]. However, the GC model was proposed to de-
scribe the case of polycenter nucleationsa@1d. This as-
sumption looks quite reasonable for the typical whiskers of
several microns width of the 1970’s but is not necessarily
true for modern VNW’s with about 100 times smaller widths.
Also, the GC model is not capable of explaining the qua-
dratic dependence of the growth rate on the effective meta-
stability of the vapor phaseDmv=Dmv

0−2Vsgvs/kBTR [this
dependence in Eq.(12) is simply the expression fitting the
experimental curves[3,16]] and of finding the crystallization
coefficient K. In particular, it is still unclear exactly why
whiskers grow much faster than the nonactivated parts of
surface. This question for the VNW is even more urgent
because the results of the previous section show that the
whisker growth rate decreases with decreasing lateral size. In
order to study these questions, below we develop a self-
consistent kinetic model of VNW growth.

The free energy of formation of a two-dimensional disc-
shaped island ofi atomsA from the supersaturated alloy(in
kBT units) reads[1,3]

Fi = 2said1/2 − Dmli . s13d

Here a;pss«ls/kBTd2, «ls is the interfacial energy of the
liquid-solid boundary per unit length ands is the surface
area per atom in a ML. The difference of chemical potentials
of atomsA in the alloy and in the crystalDml depends on the
radius of dropletR due to the Gibbs-Thomson effect[16]
similarly to Eq.(12)

Dml = lns1 + zd −
Rc

R
. s14d

HereRc=2sVsgsv−Vlglvd /kBT is the characteristic radius de-
termined by the difference of surface energies of solid–vapor
sgsvd and liquid–vaporsglvd boundaries andVl is the vol-
umes per atom in the liquid phase. For simplicity we assume
that the whisker is a cylinder with the radius of dropletR and
that the contact angle of drop amounts to 90°. In this case the
curvature of the drop surface equals the curvature of the
whisker. The supersaturation of liquid alloyz depends on the
volume concentrationC of atomsA in the alloy. In the case
of a dilute alloyz=C/Ceq−1, Ceq being the equilibrium con-
centration of alloy. In fact, Eqs.(13) and(14) have a slightly

different physical sense than the corresponding Eq.(12) of
the GC model. First, the driving force of the phase transition
in Eq. (13) is the supersaturation of the liquid alloy, not the
vapor supersaturation as in Eq.(12), because the condensing
phase in the VLS growth mechanism is definitely the liquid.
Second, Eq.(14) accounts for the curvature of the whisker
and drop surface, while Eq.(12) only accounts for the cur-
vature of the whisker surface(since gsv is normally 5–6
times larger thanglv andVs<Vl, the difference here is not
dramatic). From Eq.(13) follows the expressions of the clas-
sical nucleation theory[1] for the critical sizeic, nucleation
barrier F, and the reverse width of formation energy in the
near-critical range ic=a/Dml

2, F;Fsicd=a/Dml, −F9sicd
=Dml

3/2a. Following the standard procedure[1,3,11,17], as-
suming that the atoms from the liquid phase are attached by
the monoatomic step of the island boundary, utilizing the
Zeldovich formula for the nucleation rate and the balance
equation for the growth rate of overcritical islands, one ob-
tains

v =
ls
tD

z, I =
1

pls
2tD

s1 + zdÎ a

p
Dml expF−

a

Dml
G .

s15d

Here ls=ss /pd1/2 is the linear size of the adsorption site and
tD=expfsED+EBd /kBTg /nVlCeq is the characteristic time of
lateral growth of islands, whereED is the activation energy
for diffusion in the liquid alloy,EB is the activation energy
for the attachment to the monoatomic step andn is the fre-
quency of thermal vibrations in the liquid[3]. From Eq.(15)
it follows that the lateral growth rate of islands is propor-
tional to z and that the nucleation function obeys an ex-
tremely steep exponential dependence onDml. From Eqs.(1)
and (15) the functionaszd in the case of VNW growth is
given by

aszd = d 3S1 + z

z
DÎ a

p
Dm expS−

a

Dml
D ,

Dml = lns1 + zd −
dc

d
, s16d

whered=R/ ls anddc=Rc/ ls are the lateral size of the whis-
ker and the characteristic sizeRc in units of lattice spacingls.

In order to find the supersaturationz we use the equation
of material balance in the drop

2

3
pR3dC

dt
= 2pR2 xJ − 2pR2laC

tA
− pR2 h

Vs
dH/dt. s17d

The first term on the right-hand side of Eq.(17) represents
the number of atomsA coming from the vapor phase to the
drop per unit time, the second term, the number of desorp-
tion acts from the drop surface, and the third term, the num-
ber of atoms transformed from liquid to solid phase. In Eq.
(17) J is the material flux from the vapor phase,x is the
effective adsorption coefficient,la< ls is the interatomic dis-
tance in the liquid phase,h the height of a MLsVs=hsd, and
tA=v−1 expsEA/kBTd is the lifetime of atomsA in the surface
layer of drop,EA being the corresponding activation energy
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for desorption. In Eq.(17) we neglect the gradients of con-
centrationC within the droplet volume. The steady-state Eq.
(17) for z in view of Eqs.(10), (14), and(16) can be repre-
sented in the form

F − z =
b

d

z

ypfaszdg
. s18d

Here the value ofyp sad is still defined by Eq.(11), wherea
is given by Eq.(17), F=xtAJ/ laCeq−1 is the supersaturation
of vapor phase determined by the balance of adsorption-
desorption processes on the drop surface, andb
=sh/ laVsCeqdstA/tDd is the nondimensional parameter con-
taining the ration between the characteristic lifetime of atoms
on the drop surface and the characteristic time of island
growth. In the chemical vapor deposition and molecular
beam epitaxy techniques the quantityF is the technologi-
cally controlled parameter. From Eqs.(10) and (18), the
growth rate of VNW is proportional to the difference be-
tween the supersaturations in vapor and liquid phases

dH/dt = bsF − zd, s19d

whereb= laVsCeq/htA. Equation(18) together with Eq.(16)
allows us to find the stationary supersaturation of liquid alloy
z and then to obtain the VNW growth rate from Eq.(19). The
value ofz is controlled by five parameters: the supersatura-
tion of vapor phaseF, the GC characteristic sizedc, the
energetic parametera, the kinetic parameterb, and the whis-
ker diameterd.

IV. RESULTS AND DISCUSSION

The model of VNW growth leads to several general con-
clusions concerning the mechanisms of VNW formation.
First, similarly to the GC theory, the minimum radius of
growing VNW is given by Rmin=Rc/ lns1+Fd
~1/T lnsJ/J0d, approximately decreasing the reverse propor-
tional to the growth temperature and logarithmically with
increasing the material flux onto the surface.

Second, it is well known[3,16] that the two potential
candidates for the limiting process of the VLS growth are the
processes at the gas-liquid(unlikely case) and liquid-surface
(likely case) boundaries. Equation(19) shows that in the un-
likely case of gas-liquid limitation of the VNW growthsF
@zd the growth rate is determined simply by the balance of
adsorption-desorption processes on the liquid surface:
dH/dt=sxVsJ− laVsCeq/tAd /h. A higher growth rate of
whiskers in this case can be explained only by a better ad-
sorption and slower desorption from the liquid surface or by
a more efficient chemical reaction near the liquid surface.

In the likely case of liquid-solid limitation of the VNW
growth the supersaturation of alloy is smaller but comparable
to the supersaturation of vaporF,z [16]. Due to steep ex-
ponential dependence of nucleation rate onDml Eq. (16) for
aszd can be presented in the form[17]

aszd = asFdexpf− GsF − zdg. s20d

The large parameter of classical nucleation theory[1] G
=−s]F /]zduz=F= icsFd / sF+1d@1 is of the order of critical

size of classical nucleation theory atz=F. Using Eq.(20) in
Eqs. (18) and (19), the definition for the parameterG and
introducing the new functionx;GsF−zd we obtain the
growth rate of VNW in the form

dH/dt =
xVsJ

h

Dmv
2

a
x. s21d

Similarly to Eq. (12) Dmv=lns1+Fd−dc/d is the difference
of chemical potentials of atomsA in the vapor and solid
phases. The functionx is determined by the self-consistent
equation

xypfasFde−xg = S F

1 + F
Db

d

a

Dmv
2 . s22d

Equations(21) and(22) are valid atx!1 andx,1. Equation
(22) can be easily analyzed for the two limit cases of small
and large facets. Ata!1 anda@1 Eq. (22) is reduced to

xex = U exps− a/Dmvd, a ! 1, s23d

sx/3de x/3 = V exps− a/3Dmvd, a @ 1 s24d

with U=d 2sb/Îpdsa/Dmvd3/2 and V=sb/34/3 p1/6d
3sa7/6/Dmv

11/6dfF / s1+Fdg2/3. Solution to the equationxex

=W beginning fromW,e becomesx=ln W. Therefore, the
growth rate of VNW at intermediate values of droplet size
can be presented in the form

dH/dt =
x V s J

h
Fln U

skBTd2

ps«ls
2 Dmv

2 − DmvG, a ! 1,

s25d

dH/dt =
x V s J

h
F3 ln V

skBTd2

ps«ls
2 Dmv

2 − DmvG, a @ 1,

s26d

where we used the definition for the parametera to explicitly
present the major dependence ofdH/dt on the interfacial
energy«ls. Neglecting weak logarithmical dependencies on
U and V, Eqs. (25) and (26) give approximately quadratic
dependence of the whisker growth rate onDmv. This justifies
the main assumption of the GC model[16] given by Eq.
(12). The derived expressions contain the linear term inDmv,
however, at larger vapor supersaturations the quadratic term
dominates. The GC formula follows exactly from Eq.(21) at
x=1.

The presented kinetic model also gives the value of the
kinetic coefficient of crystallization from the liquid alloy.
Equations(25) and(26) show that it is approximately reverse
proportional to the squared interfacial energy of the liquid-
solid boundary. This dependence holds in both limit cases of
very small and very large drop size. Assuming that the su-
persaturation of adatoms on the nonactivated parts of the
substrate surface is close toF, for the intermediate drop
sizesd flnsU /Vd,1g the ratio of whisker heightHW (grown
by the VLS mechanism) and the height of nonactivated sur-
faceHS (grown by the conventional vapor-solid mechanism)
is given by
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HW/HS<
1

3

xvl

xvs
S«vs

«ls
D2

, a ! 1, s27d

HW/HS<
xvl

xvs
S«vs

«ls
D2

, a @ 1. s28d

In these equations we take into consideration that the nucle-
ation on the nonactivated surface is always polycenter. The
ratio HW/HS contains an obvious ratio of adsorption coeffi-
cients on liquidsxvld and solidsxvsd surface and a less obvi-
ous squared ratio of interfacial energies of vapor-solids«vsd
and vapor-liquids«lsd boundaries. The height of small whis-
kers grown in the monocenter mode is at least three times
smaller than that of larger ones. The whiskers grow faster
than the nonactivated surface because of the lower energy of
the liquid-solid boundary so that at given vapor supersatura-
tion it is easier to form the nuclei from the liquid alloy, the
explanation previously discussed by Givargizov[16]. Our
results provide the formula for the growth rate of whiskers
and show that its dependence on the interfacial energy within
the range of parameters is approximately reverse squared.
Taking for an estimate the typical values«vs/«ls=5–6,even
at the same adsorption coefficients the ratio of whisker/
surface growth rates will be,10 for the small and,30 for
the large drop size.

Figure 5 compares the numerical solution of Eqs.(11),
(16), (18), and (19) for the whisker growth rate with the
KJMA result for the infinite facet area at the same growth
conditions. It is seen that the finite size of growing whisker
considerably decreases the growth rate and changes the
shape of the curve. Both curves, however, provide the same
value for the minimum diameter of drop at which the growth
rate goes to zero. They also go to the same asymptotic value
at D→` when the growth is controlled by the transport of
atoms through the vapor-liquid interface. Figure 5 demon-
strates a reasonable fit to the experimental results for the
GaAs VNW and shows the significance of size-dependent
effects in the whisker growth process.

In conclusion, the model described here is the first(to the
best of our knowledge) that can systematically handle the
growth kinetics of crystal facets of arbitrary size and the size
dominated effects beyond the limits of the KJMA model. The
model was applied to the study of the growth of VNW’s in

the VLS mechanism. The self-consistent kinetic model ac-
counts for the material balance in the drop of the liquid alloy.
As a result, the formula for the whisker growth rate was
obtained which shows why the growth rate within the range
of parameters approximately obeys quadratic dependence on
the vapor metastability, why the whiskers grow much faster
than the nonactivated surface and how the growth rate de-
pends on the size of drop and the growth conditions.
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