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Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires
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We present a modification of the Kolmogorov-Johnson-Mehl-Avrami crystallization model to the case of a
finite size crystal facet growing layer by layer. A general expression for the facet growth rate is derived that
provides an asymptotic matching to the known limit cases of very small and very large facets. The derived
expression is applied to the study of the growth kinetics of vertical nanowires in the “vapor-liquid-solid”
growth mechanism. The presented model generalizes the Givargizov-Chernov theory of whisker growth, shows
why the whiskers grow much faster than the nonactivated surface, and gives the dependence of the growth rate
of nanowires on the diameter of drop of liquid alloy and the growth conditions.
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I. INTRODUCTION size of a growing facet is only several tens of nanometers,

c | hf d liauid all has b the size dependent effects come into play andRitiehavior
rystal growth from vapors and fiquid alloys has been e yertical growth rate should be carefully investigated. It

studied extensively because of a key role of composite struGsy, 4 e noted here that in the case of a very small facet the

tures in modern microelectronics and optoelectronics. Th%rowth rate is also easily determingg]. The purpose of this

growth process consists of many stages, including the nucl Japer is to present a generalized expression dbifdt

ation of islands, their independent growth, coalescence, fo Z£(1,v,R) that is valid for arbitrary values df, v, andR and

mgtlon of a continuous film sgrfacez and its further time evo'provides an asymptotic matching to the known results in the
lution [1]. In many technologically important cases CryStaISIimit cases of very small and very large facet. The obtained

grow layer by layer so that the islands are formed o di'results will be applied to studying the growth kinetics of

mensionally and the lateral growth of each layer starts OmX/NW’s. The presented kinetic model considerably general-

when the formation of a previous layer is fully completed ; ; :
s : izes the known Givargizov-ChernazC) theory [16] and
E)zl]t Th? drlvmg for(;e forhthe 92‘;‘”‘“ procests |st_the n;('lt":lts\;\tla'answers a number of important questions concerning the
ity of a CO? enS|”ng phase. the supersaturation of a Wog, o -anisms of whisker formation by the VLS mechanism.
dimensional “vapor” of adatoms or a liquid alloy. Applying

classical nucleation theory to the description of two-
dim_ensional islanq formation, one can find expres_sions for || GENERALIZED KIMA MODEL AND THE GROWTH
the island nuc_leanon rateand lateral grovvth rate of |sI§nds RATE OF CRYSTAL FACET
v as the functions of the supersaturation, the energetics of a
particular deposit-substrate system and the kinetic param- Consider a crystal facet of radilg growing due to the
eters of elementary processes on the surfateOne of the nucleation of two-dimensional disc-shaped islands of mono-
most important characteristics of the growth process is théayer (ML) height and of radiug. If the consumption of
normal growth ratelH/dt, whereH is the height of crystal. atoms of a condensing phase goes through the island bound-
In layer-by-layer growthdH/dt is a certain function of, v, ary [1,3,11,17, the lateral growth rate of overcritical islands
and facet linear sizR [3]. WhenR is very large, the normal v=dr/dt does not depend an The nucleation theory shows
growth rate isR independent. In this casiH/dt=f(l,v) can  that normally the critical size of islands is much smaller than
be found from the well known model proposed by Kolmog-the technologically interesting randgé,3,7-11,17. There-
orov [4], Johnson and Meh|5], and Avrami[6] (KJIMA  fore the islands can be assumed to arise with zero side. If
mode), which has been used extensively in the theory ofandv are time independent, the characteristic time between
crystal growth[3,7-9, alloy solidification[10], monolayer two consecutive birth processes on the facet surface is given
film formation [11], and many other growth processes. by t,=1/7R?l, and the time required for a nuclei to cover the
Recently, however, there has been an increasing interefacet area is given by,=R/v. The ratio of these two char-
towards the growth of crystals of nanometer lateral sizes, imcteristic times gives the nondimensional control parameter
particular vertical nanowiregVNW's) (or nanowhiskers 3
[12-14. VNW's are grown by the *“vapor-liquid-solid” a= iR .
(VLS) mechanism first described by Wagner and HIiS]. v

The lateral size of the whisker is usually determined by theAt a<1(t,<t,) a single nuclei covers the whole facet be-
9

diameter of a droplet of a liquid catalyst. Since typical I""ter"’“fore the next nuclei is formed. This condition relates to the
so-called monocenter regime of nucleati@. The normal
growth rate(measured in the number of ML per unit tine
*Email address: v_dubr@mail.ru dH/dt=7R?l is v independent. In the opposite case @f

1)
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>1 (t;>1p) many islands arise in one layer and then grow
and coalesce to form a continuous ML. The normal growth
rate in this case is found from the KIJMA formula for the
crystallized fraction of facef3,7-11]

t t

gt)=1- ex;{— Wf d7(nr 2(T,t):|, r(rt) = J dt’'v(t’),
0 T

(2

wherer(7,t) is the current radius of nuclei born at time

The KIMA formula is valid under the following assumptions

[4]: (a) Poissonian nucleation procegb) nucleus growing

with fixed geometrical shape and orientatiofc) nuclei

growth ratev(t) depending only ort, (d) solidlike coales-

cence,(e) space homogeneity of the system, gfidthe ab-

sence of boundaries. Since H@) applies to the case of an

infinitely large facet, the resulting growth rateRsindepen-

dent. At I=constp=const the coverage g(t)=1 Il

—exp(—m v@ t3/3) and thereforedH/dt=(m v /3)Y3. Sum-

marizing' the expressions faH/dt in the two known cases FIG. 1. Three possible geometrical situations for finding the
of monocenter and polycenter nucleation are giveri3ly transformed are&(r,p,R) (shown dark In case | the facet is con-

siderably larger than the nuclei and the transformed area equals the
dH/dt = TR, a<l, nuclei arearr? irrespective of facet radiug and positiorp. In case
H/dt= (77 v2I/3)1/3 a>1. 3) Il the facet area is small and the transformed area equals the total

_ . . facet arearR? irrespective of nuclei radiusand positiorp. In case
The simplest way to introduce the boundary effect into thell the facet and island sizes are comparable to each other and the

KJMA scheme is to write E¢(2) in the form transformed area depends oyp, andR.
t
gt)=1- ex;{— J dT|(T)S(T,t,R)] (4)  center(the transformed arg¢§4]. The integration in Eq5) is
0 taken over the whole facet area. Equatigds and (5) are

certainly approximate, because we use the averaged value of

with the effective crystallized area of facBitr,t,R) defined S(7,t,p,R) instead of the direct introduction of the boundary

as effect into Eq.(4) [18]. The functionS(7,t,p,R) depends on
1 R 7 andt via the radius of nucler (7,t) which remains the
S(ntR) = W_RZZW o dppS(7.1,p,R). (5 same as defined in ER). Three possible geometrical situ-

ations for findingS(r, p,R) at different values of,p, andR
HereS(7,t,p,R) is the area of the facet covered by the timeare illustrated by Fig. 1. The formulas f&r,p,R) in these
t by the nuclei formed at time at distancep from the facet three cases are given by

mr?, r<R-p,

S(r,p,R) ={R¥ (612 - sinbl2) +1 (/2 - singl2), R-p<r<R+p, (6)
R?, r=R+p,

where =2 arccof(R?+p?-r ?)/2Rp] and ¢=2 arccof(r >  for S(7,t,R)=9r (7,t),R] can be approximated with high

+p?—R?)/2rp]. Obviously, case | in Fig. 1 corresponds to accuracy by the power function of the form

polycenter and case Ill to monocenter nucleation while case

Il describes the transition between the two limit regimes.  S(¥.R)
In principle, the substitution of Eq6) into Eq. (5), fur- 2 _ _ 5 <

ther integration of Eq(5), and using the result in Eq4) :{WRE [y~ (3/8)y*- (1/16y*+ (1/32y°], y=2,

allows us to find the characteristic time of ML formation and R, y>2,

therefore the normal growth rate of the facet. However, the (7)

presented expressions are not of friendly form due to the

presence of reverse trigonometric functions. A detailedvhere y(7,t)=r(7,t)/R. The comparison between the nu-

analysis of Eqs(5) and (6) shows that the numerical result merical result forS(y, R) obtained from Eqs(5) and(6) and
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FIG. 2. Comparison between the numerical solution for the

transformed area obtained from E¢S) and(6) (black squaresand

the power function defined by E¢7) (solid line).

the approximation given by Eq7) is shown in Fig. 2.
At constantl andv the use of Eq(7) in Eg. (4) gives the

generalized KIMA exponent

g(t) =g(y) =1 - exg- af(y)].

Here y(t)=r(0,t)/R=vt/R, a=const is defined in Eq(l)

and

fo) = (1/3)y® - (3/32y* - (1/80)y° + (1/192)y5,
W=1y_09, y>2.

The time dependencies of coveragebtained from Eqs8)
and(9) at fixedl andv and different values of facet radiks
are presented in Fig. 3. The curve @t 10 presents the

FIG. 4. Cylindrical whisker of materia of radiusR and height
H grown on the crystal surface of materfalctivated by the drops
of liquid alloy B+A.

dH/dt=

U
Ry’ (10

Quantityy* () is the solution to the transcendent equation
af(y)=1 (11

that determines the characteristic time of ML formation.
The asymptotic matching of the obtained results to the

known limit regimes[3] is obvious. At smalla f(y) =y>1

and thereforg/* =~ 1/a, while at largea f(y) ~y3/3<1 and

y#* =~ (3/a)Y3. From here Eq(10) is immediately reduced to

Egs. (3) in both limit cases. It can be shown that Egs.

(7«11 remain valid for an arbitrary convex geometry of

usual Kolmogorov exponent in the polycenter mode, thesjands if we replacerR? to cR2, whereR is a certain linear

curve ata=1 corresponds to an intermediate mode, and th&jze of island and the shape constant such that the island
curve ata=0.125 presents the situation when the size assogreaS=cR2.

ciated effects become dominating. Figure 3 demonstrates that

at the same growth conditioris andv) smaller facets grow

considerably slower than the larger ones.
The normal growth rate of facet is given by

1.0 AR
0.8 J -
. / -
o O 6- . Ed -
% . : / P
© . i
e 7
°>c” 0.4 N s
8 . , 7/ - - -R=0.5R,, a=0.125
02 7 —RRy, ol
/2 R=100R,, a=100000
/4
0.0 - T i '
0 2 4 6

Relative time vt/R,

FIG. 3. Dependencies of coverage on the relative time
vt/ Ry, Ry=(v/al)¥3 at three different facet radR relating to dif-

ferent values of parameter.

IIl. KINETIC MODEL OF VNW GROWTH

The typical procedure of the VLS growtfl2-1¢ of
whiskers is shown schematically in Fig. 4. First, the catalyst
B (e.g., Au is deposited onto a crystal substrate of matekial
(e.g., Si, GaAgy then the substrate is transferred to a growth
chamber and annealed before the whiskers are grown. An-
nealing leads to the formation of drops of eutectic liquid
alloy B+A (e.g., Au+Si or Au+GaAgson the substrate. The
deposition of material from the vapor phase or molecular
beam makes the alloy supersaturated. The whisker grows due
to the crystallization of supersaturated alloy on the crystal
surface under the drop.

Experimentd3,12-16 show that Si, GaAs, and InP whis-
kers at typical growth temperatures grow layer by layer.
Since the initial eutectic drops usually have a broad size
distribution and the whisker lateral size is usually of the or-
der of the size of drop, the size dependence of whisker
growth rate has been studied experimentally in many sys-
tems[3,12,14. The known GC model provides the following
expression for the whisker growth rate6]:
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20 2 different physical sense than the corresponding #8) of
dH/dt= K[Aﬂg - k;;s}} = KA. (12)  the GC model. First, the driving force of t[;]e pha%e tqr)ansition
8 in Eq. (13) is the supersaturation of the liquid alloy, not the
HereA,uS is the difference of chemical potentials of atos vapor supersaturation as in §§2), because the condensing
in the vapor and solid phasés kgT units, T is the substrate phase in the VLS growth mechanism is definitely the liquid.
temperature during the whisker growth drgthe Boltzmann  Second, Eq(14) accounts for the curvature of the whisker
constant for the planar interfacial boundary,, is the sur- and drop surface, while E¢12) only accounts for the cur-
face energy of the solid - vapor bounddper unit arep Q0 vature of the whisker surfacésince yg, is normally 5-6
is the volume per atom in the crystal, akdis an unknown times larger thany,, and Q¢=(),, the difference here is not
coefficient of crystallization from the liquid alloy. The sec- dramatig. From Eq.(13) follows the expressions of the clas-
ond term in the square brackets on the right-hand side of Egical nucleation theoryl] for the critical sizei., nucleation
(12) arises due to the curvature of the whisker surface. Equabarrier F, and the reverse width of formation energy in the
tion (12) qualitatively explains the experimentally observed near-critical rangeic:a/A,ulz, F=F(i)=alAw, -F"(i.)
increase in the whisker growth rate with an increase of the=Au?/2a. Following the standard proceduf#,3,11,17, as-
size of the droplet and the existence of a certain minimunsuming that the atoms from the liquid phase are attached by
size of dropletR,,, below which the whiskers cannot grow the monoatomic step of the island boundary, utilizing the
[3,12-14,16 However, the GC model was proposed to de-Zeldovich formula for the nucleation rate and the balance
scribe the case of polycenter nucleaticw>1). This as- equation for the growth rate of overcritical islands, one ob-
sumption looks quite reasonable for the typical whiskers ofains

several microns width of the 1970’s but is not necessarily

true for modern VNW’s with about 100 times smaller widths. v= I_Sg | = 1 (1+0)1 /EAM exp[— i} _
Also, the GC model is not capable of explaining the qua- o 7TI§TD ™ Ay

dratic dependence of the growth rate on the effective meta- (15)

stability of the vapor phaséu,=Aul-20y,s/ksTR [this
dependence in Eq12) is simply the expression fitting the Herelg=(a/m)*?is the linear size of the adsorption site and
experimental curvef3,16]] and of finding the crystallization T=exd(Ep+Eg)/kgT]/ v} C, is the characteristic time of
coefficientK. In particular, it is still unclear exactly why lateral growth of islands, wherg is the activation energy
whiskers grow much faster than the nonactivated parts ofor diffusion in the liquid alloy,Eg is the activation energy
surface. This question for the VNW is even more urgentfor the attachment to the monoatomic step anid the fre-
because the results of the previous section show that thguency of thermal vibrations in the liqu[@]. From Eq.(15)
whisker growth rate decreases with decreasing lateral size. lih follows that the lateral growth rate of islands is propor-
order to study these questions, below we develop a selftional to ¢ and that the nucleation function obeys an ex-
consistent kinetic model of VNW growth. tremely steep exponential dependencedai. From Eqs(1)
The free energy of formation of a two-dimensional disc-and (15) the functiona(¢) in the case of VNW growth is
shaped island of atomsA from the supersaturated allgin given by

kT units) reads[1,3]
_ a1+l a a
Fi=2(ai) 2 - Ai. (13) a() =d (T) VAR ex"(‘ A_,u,|>’
Here a= mro(g,s/KgT)?, €5 is the interfacial energy of the q
liquid-solid boundary per unit length and is the surface A =In(L+9) _EC' (16)

area per atom in a ML. The difference of chemical potentials

of atomsA in the alloy and in the crystaly, depends onthe \\hered=R/I, andd.=R./I, are the lateral size of the whis-
radius of dropletR due to the Gibbs-Thomson effefl6] | and the characteristic sige in units of lattice spacindy.

similarly to Eq.(12) In order to find the supersaturatigrwe use the equation
R, of material balance in the drop
A =In(1+)-—". (14
2 dC 1,C h
R —7R— = 27R? yJ - 27R?2= — 7R? — dH/dt. (17)
3 dt TA QS

HereR.=2(Qgys, — 1 7,) kg T is the characteristic radius de-
termined by the difference of surface energies of solid—vapor he first term on the right-hand side of Ed.7) represents
(vs,) and liquid—vapor(vy,,) boundaries and), is the vol- the number of atom#é coming from the vapor phase to the
umes per atom in the liquid phase. For simplicity we assumelrop per unit time, the second term, the number of desorp-
that the whisker is a cylinder with the radius of drogReand  tion acts from the drop surface, and the third term, the num-
that the contact angle of drop amounts to 90°. In this case thier of atoms transformed from liquid to solid phase. In Eq.
curvature of the drop surface equals the curvature of thél?7) J is the material flux from the vapor phasg,is the
whisker. The supersaturation of liquid allgydepends on the effective adsorption coefficienit,~ |4 is the interatomic dis-
volume concentratiol€ of atomsA in the alloy. In the case tance in the liquid phasé,the height of a ML(Q2s=ho), and

of a dilute alloy{=C/Cg;—1, C¢qbeing the equilibrium con- a=v L exp(En/kgT) is the lifetime of atomd\ in the surface
centration of alloy. In fact, Eq$13) and(14) have a slightly  layer of drop,E, being the corresponding activation energy
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for desorption. In Eq(17) we neglect the gradients of con- size of classical nucleation theory &t ®. Using Eq.(20) in
centrationC within the droplet volume. The steady-state Eq.Eqgs. (18) and (19), the definition for the parametdr and
(17) for £ in view of Egs.(10), (14), and(16) can be repre- introducing the new functiox=I'(®-¢) we obtain the

sented in the form growth rate of VNW in the form
b ¢ QI Au?
—{=7 : (18) dH/dt="—"——"x. 21

Here the value of* () is still defined by Eq(11), wherea Similarly to Eq.(12) Aw,=In(1+®)-d./d is the difference
is given by Eq(17), ®=x7aJ/1,Ceq= 1 is the supersaturation of chemical potentials of atoma in the vapor and solid
of vapor phase determined by the balance of adsorptiorphases. The function is determined by the self-consistent
desorption processes on the drop surface, abd equation
=(h/1,Q2Ceq)(7a/ 7p) is the nondimensional parameter con-

.. . T . _ [)) b a
taining the ration between the characteristic lifetime of atoms xy.[ a(®)e x] - -a (22)
on the drop surface and the characteristic time of island 1+d dA,uﬁ

growth. In the chemical vapor deposition and molecular : . _
; ; g . Equationg21) and(22) are valid ax<<1 andx~ 1. Equation
b t tech th tibyis the technologi- X e
ceam epitaxy techniques the quantityis the technolog! (22) can be easily analyzed for the two limit cases of small

cally controlled parameter. From Eg€lO) and (18), the .
growth rate of VNW is proportional to the difference be- and large facets. Av<1 ande>1 Eq.(22) is reduced to

tween the supersaturations in vapor and liquid phases xeX=Uexp- a/Ay,), a<l1, (23)
dH/dt= B(d - ¢), (19

where 8=1,Q.C.,/h7s. Equation(18) together with Eq(16 —

allows[is 0 fsinéqtheAsta':?onary éup)ers?ituration of Iiglgid)alloywith U=d2b/Vm)(alAw,)*? and  V=(b/3*3 719

£ and then to obtain the VNW growth rate from Eg9). The X (@”/%/Au;"O)[®/(1+®)]?%. Solution to the equatione™
value of  is controlled by five parameters: the supersatura=W beginning fromW~e becomesx=In W. Therefore, the
tion of vapor phaseb, the GC characteristic sizé,, the  growth rate of VNW at intermediate values of droplet size
energetic parameter, the kinetic parametds, and the whis- ~ can be presented in the form

ker diametem. Y Q S‘]|: (kBT)Z ,

(x/3)e®=Vexp-a/3Au,), a>1 (24)

dH/dt= INU—="5Au

TOEg|g

v

- A,LLU:| , a<<l,

IV. RESULTS AND DISCUSSION (25
The model of VNW growth leads to several general con-

clusions concerning the mechanisms of VNW formation. xQJ (keT)?

First, similarly to the GC theory, the minimum radius of dH/dt= H 3INV—=FAu; - Aup, |, a>1,

growing VNW is given by Rp,=R./In(1+®) Tl

« 1/TIn(3/J3y), approximately decreasing the reverse propor- (26)

tional to the growth temperature and logarithmically with

Increasing the_matenal flux onto the surface. . present the major dependence dii/dt on the interfacial

Second, it is well known(3,16 that the two potential gnergy e Neglecting weak logarithmical dependencies on
candidates for the limiting process of the VLS growth are the; ;4 v Egs. (25) and (26) give approximately quadratic
processes at the gas-liquidnlikely case and liquid-surface dependénce of the whisker growth ratefop,. This justifies
(likely casg boundaries. Equatiofl9) shows that in the un- o oy assumption of the GC moc[éJG]v given by Eq.
likely case of gas-liquid limitation of the VNW growttr> f(12). The derived expressions contain the linear term i),
> {) the growth rate is determined simply by the balance of,qyever, at larger vapor supersaturations the quadratic term
adsorption-desorption processes on the liquid surfacjominates. The GC formula follows exactly from Eg1) at
dH/dt=(xQJ-1.QLCeq/ 7a)/h. A higher growth rate of y—q
whiskers in this case can be explained only by a better ad- The presented kinetic model also gives the value of the
sorption and slower desorption from the liquid surface or bykinetic coefficient of crystallization from the liquid alloy.
a more efficient chemical reaction near the liquid surface. Equationg25) and(26) show that it is approximately reverse

In the likely case of liquid-solid limitation of the VNW  proportional to the squared interfacial energy of the liquid-
growth the supersaturation of alloy is smaller but comparablgo|id houndary. This dependence holds in both limit cases of
to the supersaturation of vapdr~  [16]. Due to steep ex- very small and very large drop size. Assuming that the su-
ponential dependence of nucleation rategn Eq.(16) for  persaturation of adatoms on the nonactivated parts of the
a(¢) can be presented in the forfa7] substrate surface is close tb, for the intermediate drop

_ _ _ sizesd [In(U/V) ~ 1] the ratio of whisker heighitl,, (grown
a(§) = a(@)ex=T(® = 9)]. (20 by the VLS mechanisinand the height of nonactivated sur-

The large parameter of classical nucleation thefity I'  faceHg (grown by the conventional vapor-solid mechanjsm
==(F190)| ;= =i(P)/ (P+1)>1 is of the order of critical is given by

where we used the definition for the parametéo explicitly
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1 2 0.3 2
HW/HSz—ﬂ<8—"5) . a<1, 27)
3Xus Els .
Xol [ Eus 2 0.2 b
Hy/Hs~ 29[ 22)  a>1. (29) -
Xvs\ €ls

In these equations we take into consideration that the nucle-
ation on the nonactivated surface is always polycenter. The
ratio Hyy/Hg contains an obvious ratio of adsorption coeffi-
cients on liquid(y,;) and solid(yx,s surface and a less obvi-
ous squared ratio of interfacial energies of vapor-s@did) 0.0 s _
and vapor-liquid(e;s) boundaries. The height of small whis- 0 20 40 60 80 100 120 140 160 180 200

kers grown in the monocenter mode is at least three times Drop diameter D [nm]

smaller than that of larger ones. The whiskers grow faster

than the nonactivated surface because of the lower energy of FIG- 5. Dependences of the growth rate of VNW on the drop
the liquid-solid boundary so that at given vapor supersaturadiameter. Line 1is calculated by means of Egd) and(16)19)

tion it is easier to form the nuclei from the liquid alloy, the 2t P=33,0=3,5=0.35 ML/sa=15, andR;=2.5 nm. Line 2 cor-
explanation previously discussed by Givargizkh6]. Our responds to the pure polycenter regime of nucleation at the same

results provide the formula for the growth rate of Whiskerscond.'t'ons' The black re.CtangleS represent the ?Xper'menFaI data
gbtained from the analysis of scanning electron microscopy images

?hnd show th?t its dep?nderjce on theT mt;arlfaual energy W|th|nf GaAs VNW. The VNW's were grown on the Ga@id1)B sur-
€ range ol parameters IS approximately reverse squareh . ,c.qyated by the 2.5 nm Au layer annealed at 610 °C, the

Taking for an estlmate_ the typl(_:gl value§s/8|s=_5—6,eve_n mount of deposited GaAs was 200 nm, the growth temperature
at the same adsorption coefficients the ratio of whiskerggyoc and the growth rate of GaAs 0.4 MLJEI).

surface growth rates will be-10 for the small and~30 for
the large drop size.

Figure 5 compares the numerical solution of EgL),
(16), (18), and (19) for the whisker growth rate with the
KJMA result for the infinite facet area at the same growth
conditions. It is seen that the finite size of growing whisker

Growth rate V [ML/s]
(]

the VLS mechanism. The self-consistent kinetic model ac-
counts for the material balance in the drop of the liquid alloy.
As a result, the formula for the whisker growth rate was
obtained which shows why the growth rate within the range

considerably decreases the growth rate and changes t éparameters appr(_»_(imately obeys _quadratic dependence on
shape of the curve. Both curves, however, provide the sam e vapor metastability, why the whiskers grow much faster

value for the minimum diameter of drop at which the grovvtht an the nonaqtlvated surface and how the gr(_)yvth rate de-

rate goes to zero. They also go to the same asymptotic vall.RaendS on the size of drop and the growth conditions.

at D — o~ when the growth is controlled by the transport of

atoms through the vappr—liquid interfa_tce. Figure 5 demon- ACKNOWLEDGMENTS
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